UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN

Physics 403. Modern Physics Laboratory

Summer 2021

Eugene V Colla, Alexey Bezryadin

COVID-19 hybrid version

Physics 403 Modern Physics Laboratory

Summer 2021 Teaching Team

Instructors: Eugene V Colla kolla@illinos.edu

Alexey Bezryadin bezryadi@illinois.edu

Vishal Ganesan vishalg2@illinois.edu

Sai Paladugu sp12@illinois.edu

Abid Khan aakhan3@illinois.edu

Andrew Calhoun ajc7@illinois.edu

Jack

Laboratory Specialists:

Jack Boparai jboparai@illinois.edu

Todd Moore tcmoore@illinois.edu

Todd

Support from Paul Kwiat Team

Andrew Conrad aconrad5@illinois.edu

Samantha Isaac isaac5@illinois.edu

Nathan Arnold narnold4@illinois.edu

Spencer Johnson sij3@illinois.edu

Colin Lualdi clualdi2@illinois.edu

Physics 403 Modern Physics Laboratory

Summer 2021 Teaching Team

Special thanks to Virginia Lorenz for help in preparation Physics 403 course to online version!

Outline

- I. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working mode
 In class and "after hours" access
 Safety, Responsibility
 Home and away computing
- V. Take a Lab tour (only video)!
- VI. Let's get started electronic logbooks digital scopes

Course Goals. Primary goals:

Learn how to "do" research

- ✓ Each project is a mini-research project
- ✓ How are experiments actually carried out?
 - The procedures aren't all written out
 - The questions are not in the back of the chapter
 - The answers are not in the back of the book
 - You will have to learn to guide your own activities
- ✓ Use of modern tools and modern analysis and data-recording techniques

Course Goals. Primary goals:

- Learn how to document your work
 - Online electronic logbook *
 - Online saving data and projects in student area on server
 - Using traditional paper logbooks
 - Making an analysis report
 - Writing formal reports
 - Presenting your findings orally (online)

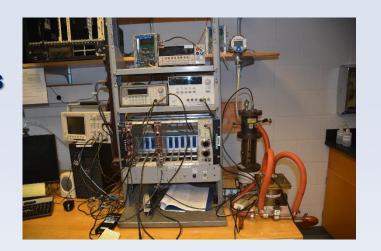
Course Goals. Secondary goals:

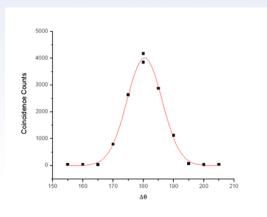
- Learn some modern physics
 - Many experiments were once awarded by Nobelprize
 - They touch on important topics in the development of modern physics
 - Some will provide additional insight to understand advanced courses you have taken

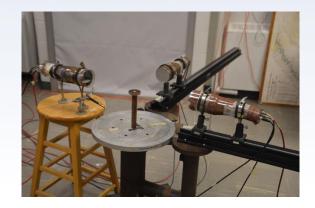
The Experiments. Three main groups

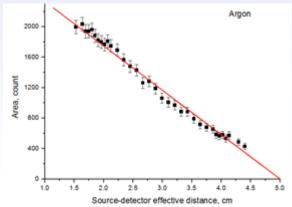
Nuclear / Particle (NP)

Atomic / Molecular / Optics (AMO)

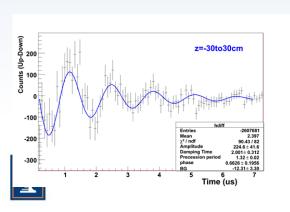

Condensed Matter (CM)

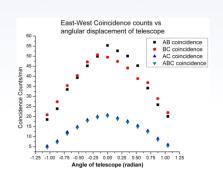

You will do the experiment from all these groups




Nuclear / Particle (NP)

- Alpha particle range in gasses
- γ-γ correlation experiment
- γ spectroscopy
- Mössbauer spectroscopy

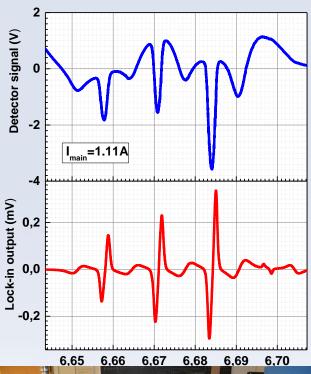




- Nuclear / Particle (NP)
 - Cosmic ray muons:
 - Lifetime, capture rate, magnetic moment
 - Angular distribution of cosmic rays
 - γ spectroscopy
 - Mössbauer spectroscopy (new)

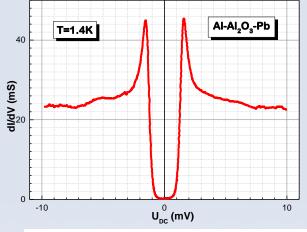
Atomic/Molecular/Optics (AMO)

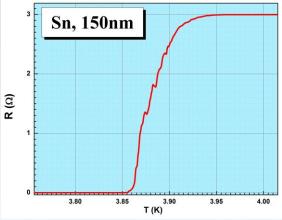
- Berry's phase
- Quantum erasure
- Quantum Entanglement

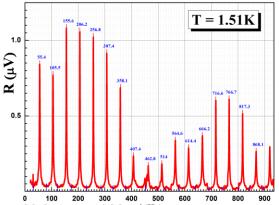


Atomic/Molecular/Optics (AMO)

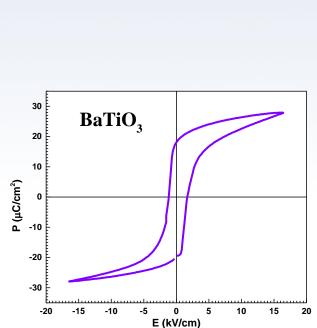
- Optical pumping of rubidium gas
- Fluorescence spectroscopy

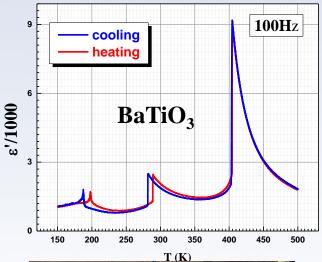




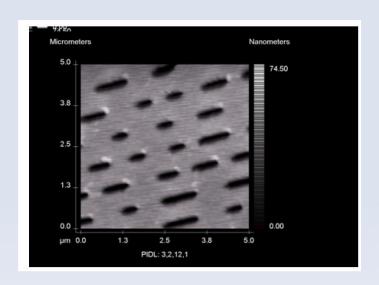

- Condensed Matter (CM)
- Superconductivity
- Tunneling in superconductors
- 2nd sound in ⁴He superfluid

state

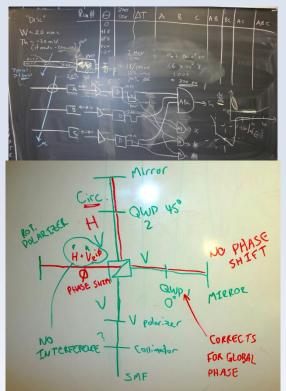


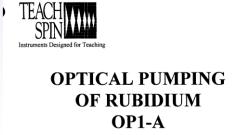

Physics 403 Summer 2021 f(Hz)

- Condensed Matter (CM)
- Ferroelectrics and ferroelectric phase transition
- Pulsed NMR
- Calibration of temperature sensors



- Condensed Matter (CM)
- Special Tools:
- Vacuum film deposition
- Atomic Force Microscope
- Polarizing microscope





illinois.edu Physics 403 Summer 2021 15

The "manuals"

- Many are just guides
- A only few purchased experiments have "real" manuals
- We serve as your guides ... like real research ... yes, we will do it in "online" mode too. We have prepared the materials explaining how to do the experiments and data analysis and you can find all these materials and examples of data analysis in folder in common drive.

The "manuals"

 For most of the P403 experiments we have prepared the folders containing the most important materials related to the experiment.
 These folders are located on the shelves in ESB5105. You can borrow the folders until working on experiment and on the report.

Outline

- J. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working modeIn class and "after hours" accessSafety, ResponsibilityHome and away computing
- V. Take a Lab tour!
- VI. Let's get started electronic logbooks digital scopes

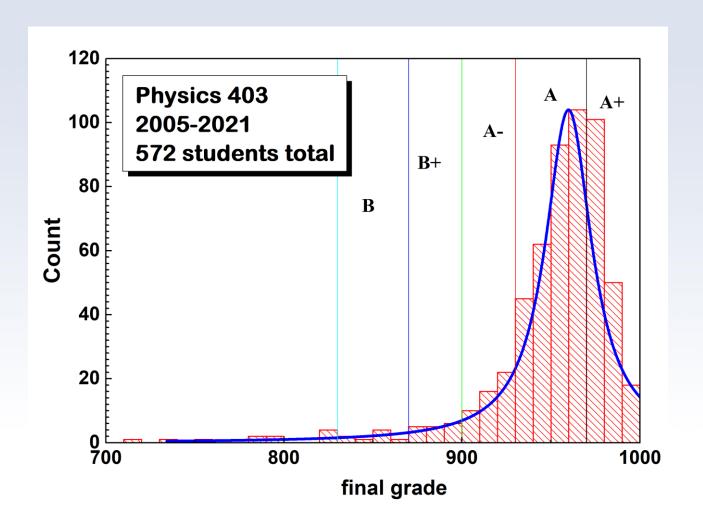
Grading: Distribution of "740" points

ASSIGNMENT	Points
Expt. documentation : elog reports, shift summaries, plot quality; paper logbooks	120 Total 60 / cycle
Formal reports: physics case, quality of results, depth of analysis, conclusions	400 Total 100 / report
1st Oral report: motivation, organization of presentation; fielding questions	100
Final Oral Presentation ≡ Final Exam	120
Total	740
Effective point total will be	740

The grading scale will be a percentage out of "740":

Letter grading scale is approximately 97% = A+, 93% = A, 90% = A-, 87% = B+, 83% = B, 80% = B-, etc

Resubmission


You can RESUBMIT one lab report to improve your grade (deadline for resubmissions and for report #4 August 6th 2021)

The general rules for resubmission:

- 1. Original report should be submitted in time with no using of the late ticket
- 2. The original report should be a real report but not only the title page
- 3. We do not recommend to resubmit the report if the original grade was over 90 points

Grading: a piece of history and analysis of the results

Submission of Lab-Reports

- Due dates as on syllabus at midnight
- The reports should be uploaded to the server:
- https://my.physics.illinois.edu/courses/upload/
- Accepted MS-Word or PDF*
- For orals MS-PowerPoint* or PDF

* preferable

Absences

If you are sick, let Eugene know by email (<u>kolla@Illinois.edu</u>).
 Don't come in and get others sick. We are working side-by-side in a close environment for many hours.

 You can "make up" the time with arrangements and you can have access to the rooms. We will be accommodating.

Absences. Excuse Policy.

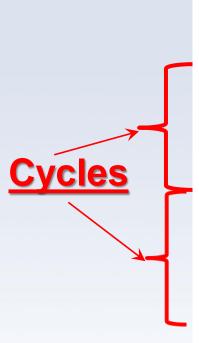
- You can be excused from only one missed assignment, and only if you provide medical or any other acceptable documentation¹.
- If you have missed the oral presentation (oral #1) by acceptable reason, you need to discuss this with us and we will arrange the date for your oral talk.
- The Final Oral cannot be excused, as it is equivalent to a final exam.
 You cannot pass the course without credit for this assignment²

1. Student Code: https://studentcode.illinois.edu/article1/part5/1-501/

2. Ibid: https://studentcode.illinois.edu/article3/part2/3-201/

Late Reports

- Policy for late reports
 - You can have ONE "late ticket" for a "free" delay of up to 3 business days, but you must tell us you are using the ticket
 - > Reports are due at midnight on the date shown on the syllabus. After that we will charge:
 - 5 points for up to 1 week late. 10 points for up to 2 weeks late.
 - After that, it's too late.


C1-Ex1(7.01.2021)

Outline

- . Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working modeIn class and "after hours" accessSafety, ResponsibilityHome and away computing
- V. Take a Lab tour!
- VI. Let's get started electronic logbooks digital scopes

Syllabus

	Date	Day	Activity		Lectures: 10am	Note	Duo doss
	Date		8am-noon	1pm-5pm	Journal club: 3pm	Note	Due days
1	6/15	Tuesday	Orientation		About Phy403	<u> </u>	
2	6/16	Wednesday	Cycle 1-1	Cycle 1-1	OriginPro, ROOT Intro		
3	6/22	Tuesday	Cycle 1-1	Cycle 1-1	Ferroelectricity		
4	6/23	Wednesday	Cycle 1-1	Cycle 1-1	Written Reports		
5	6/29	Tuesday	Cycle 1-2	Cycle 1-2	Error analysis		
6	6/30	Wednesday	Cycle 1-2	Cycle 1-2	Lock-in Amps and FT		C1-Ex1(7.01.2021)
7	7/06	Tuesday	Cycle 1-2	Cycle 1-2	Oral Reports/Talks		
8	7/07	Wednesday	Cycle 2-1	Cycle 2-1	Superconductivity	Rotate	
9	7/13	Tuesday	ORALS Cycle 1				
10	7/14	Wednesday	Cycle 2-1	Cycle 2-1	TBA		C1-Ex2(7.15.2021)
11	7/20	Tuesday	Cycle 2-1	Cycle 2-1	Nuclear Physics		
12	7/21	Wednesday	Cycle 2-2	Cycle 2-2	Measuring Temperature		
13	7/27	Tuesday	Cycle 2-2	Cycle 2-2	Entanglement		C2-Ex1(7.29.2021)
14	7/28	Wednesday	Cycle 2-2	Cycle 2-2	TBA		
15	8/03	Tuesday	FINAL ORALS				
16	8/05	Thursday			READING DAY		C2-Ex2(8.06.2021)

	NP A. Cosmic Muon Stand i. Muon lifetime ii. Capture rate iii. Magnetic moment B. Alpha range C. Gamma Gamma D. Cosmic angular distribution E. Mössbauer spectroscopy	A. Ferro 1 B. Ferro 2 (imaging) C. 2 nd sound of ⁴ He D. pNMR E. Hysteresis loops F. Tunneling G. AFM H. T calibration	Atomic + CM A.Optical pumping B.Superconductivity C.Mutual inductance	Optics A. Quantum Table i. Berry's phase ii. Quantum erasure iii. Entanglement B. Florescence spectroscopy
	Alexey, Abid, Vishal	Eugene, Jack	Eugene, Sai, Andrew	Abid, Sai and TA's from Kwiat Lab
C1-1	4 – 9; 10 - 13	1 – 6; 5- 14;	7 – 8;	11–12; 2 -3
C1-2	1-8; 3-5	9-12; 13 – 14	2 – 6	4 – 10; 7 - 11
C2-1	10 - 14	2-3, 1-11	4 – 7; 9– 12	5-6; 8-13
C2-2	2-14; 4-6	5 - 8, 4 - 6, 7 - 11	1 - 9;	12 - 13

Summer 2021

Physics

Cycle	#	Experiment
C1-1	4,9	Mössbauer spectroscopy
	10,13	Gamma-gamma
	5, 14	Ferro 1
	1,6	Second Sound
	7,8	Superconductivity
	11, 12	Fluorescence
	2,3	Quantum Optics
	3,5	Cosmic ray muons
	1,8	Gamma-gamma
	13,14	Tunneling
C1-2	9,12	Ferro 2
	2,6	Optical Pumping
	4,10	Fluorescence
	7,11	Quantum Optics

Cycle	#	Experiment
C2-1	10,14	Alpha range
	2,3	Tunneling
	1,11	NMR
	9,12	Superconductivity
	4,7	Optical pumping
	8,13	Fluorescence
	5,6	Quantum Optics
	2,14	Gamma-gamma
	4,6	Ferro 1
	5,8	Second Sound
C2-2	7, 11	AFM
	3,10	Superconductivity
	1,9	Optical Pumping
	12,13	Quantum Optics

Assignment of experiments

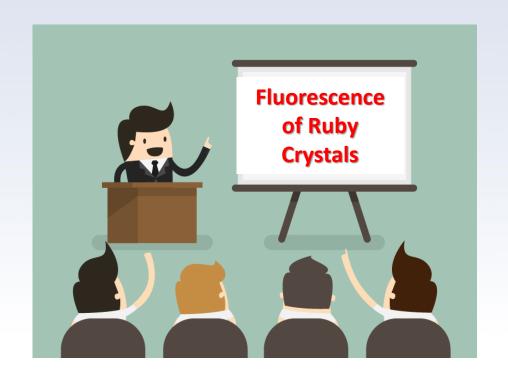
2 cycles with 2 experiments

→ teams change after cycle or by starting new experiment

→ joint team reports and elogs but oral

presentations will be

done by each student



<u>personally</u>

Spring 2019 Orals Physics 403

After 2 experiments (1 cycle) we will have oral session. The topic of the presentation will be chosen from the experiments done in this cycle.

Outline

- I. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working mode

In class and "after hours" access
Safety, Responsibility
Home and away computing

- V. Take a Lab tour!
- VI. Let's get started electronic logbooks digital scopes

Lab Access

Use Your ID Card to Access the Lab
You can access the Lab not only on "Lab days"
Late time rules:

You can stay in the Lab until 8pm but need to

Sorry, not for hybrid option

After 8pm and on weekend days – you have to discuss this schedule with your instructor and in general it is preferable to avoid working after 8 pm and on week

Safety is your responsibility!

Hazards: high voltage, radioactive sources,

cryogens, chemical materials, high pressure

In class work and "after hours" access & work requires

responsible conduct with regards to

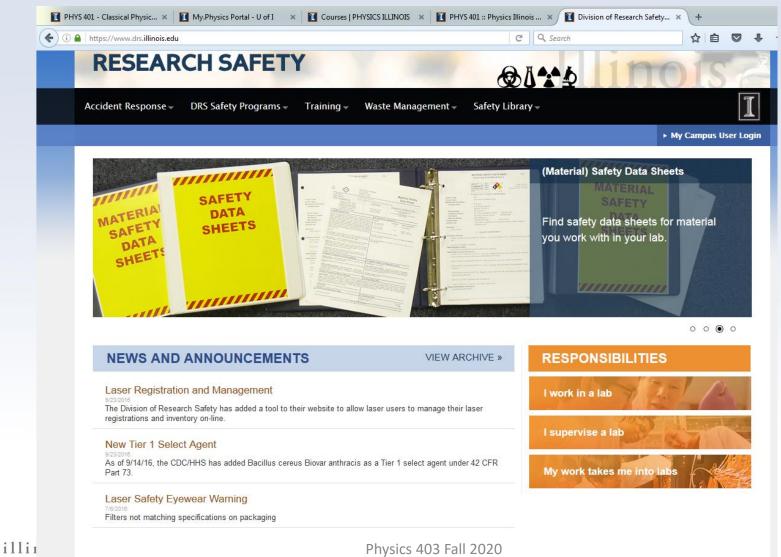
- (I) safety/hazards and with
- (II) equipment

Discuss potential hazards at the beginning of each experiment with an instructor or TA

When in doubt stop and ask

Problems after hours: 217 493 1576 (Eugene's cell)

(Alexey's cell)



SAFETY

Follow Directly the Recommendations of Safety Working

https://www.drs.illinois.edu/

Follow Directly the Recommendations of Safety Working

Chemical Waste Collection and Storage

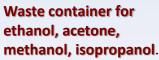
Before generating chemical waste, the researcher should determine how it will be collected and stored and obtain the necessary equipment (containers, labels) in advance. The choice of procedures depends on the type of waste and its final disposition. This section explains how to determine the final disposition of waste, select the appropriate waste container, and store waste in the lab or work area. It also suggests waste minimization strategies.

Determining How to Dispose of a Chemical Waste

The final disposition of a chemical waste is determined by the answers to a series of questions:

- Step 1. Is the waste <u>Contaminated Debris</u> (glassware, paper towels, clean-up materials), or is it a chemical or chemical mixture? If it is contaminated debris: Go to Step 5.
 If it is a chemical or chemical mixture: Go to Step 2.
- Step 2. Is the chemical a DEA (Drug Enforcement Agency) controlled substance? (Refer to the <u>DEA list controlled substances</u>

 Yes: Refer to the <u>DEA Controlled Substances</u> Guide for disposal procedures.
- Step 3. Is the chemical a solid (not liquid or gas)?


No: Go to Step 3.

disposal procedures.

- Yes: Collect and store the waste as described in the waste container and storage guidelines listed below and dispose of it through the Division of Research Safety (DRS) chemical waste disposal program. See the section Procedures for Requesting Chemical Waste Disposal for the disposal procedures. (No solid chemical waste, hazardous or non-hazardous, should be placed in the regular trash.)
 No: Go to Step 4.
- Step 4. Is the chemical a liquid non-hazardous waste as listed in the section <u>Liquid Non-Hazardous Chemical Waste Disposal</u>? Yes: The chemical may be poured down the sanitary sewer (sink drain) with copious amounts of water. No: Collect and store the waste as described in the waste container and storage guidelines listed below, and dispose of it through the DRS chemical waste disposal program. See the section Procedures for Requesting Chemical Waste Disposal for the
- Step 5. Is the contaminated debris laboratory glassware (broken and unbroken)?
 Yes: See the Laboratory Glassware Waste Disposal section.
 - Yes: See the <u>Laboratory Glassware Waste Disposal</u> section No: Go to Step 6.
- Step 6. Is the debris contaminated with a substance listed in the section <u>Liquid Non-Hazardous Chemical Waste Disposal</u>? Yes: The contaminated debris can be disposed of in the regular trash.
 - No: Collect and store the contaminated debris as described in the waste container and storage guidelines listed below: dispose

Waste container for mineral spirits.

Waste containers for chemicals used in NMR experiment

Follow Directly the Recommendations of Safety Working

Laboratory Sharps

Definition

Materials that qualify as "sharps" are defined at the state level and shall be disposed of as Potentially Infectious Medical Waste (PIMW). In Illinois, the Illinois Environmental Protection Agency (IEPA) has designated the following material (used or unused) as sharps:

- Any medical needles,
- Syringe barrels (with or without needle),
- Pasteur pipettes (glass),
- Scalpel and razor blades,
- Blood vials,
- Microscope slides and coverslips,
- •Glassware contaminated with infectious agents.

NEVER dispose of these items in **SDGs**:

- •Plastic items (except for syringes),
- •Beverage containers (no pop cans!),
- •Non-biologically contaminated laboratory glassware,
- Solvent/chemical bottles,
- Light bulbs,
- Any paper materials,
- Pipette tips,
- Plastic pipettes,
- ·Aerosol cans or cans of any type,
- Scintillation vials,
- •Any item with liquid (except for blood in vacutainer tubes).

Waste container for sharps

Follow Directly the Recommendations of Safety Working

https://www.drs.illinois.edu/

Safety working in online mode is completely your responsibility. Working from home you are only faced to your electronic gadgets, no radiation from isotopes used in Lab, no cryogenics, no chemistry components, no high voltage.

Outline

- V. Take a Lab tour! It will be virtual tour.
- VI. Let's get started electronic logbooks digital scopes

Outline

- J. Goals of the course
- II. Teamwork / grades / expectations from you
- III. Syllabus and schedule
- IV. Your working mode
 In class and "after hours" access
 Safety, Responsibility
 Home and away computing
- V. Take a Lab tour!
- VI. Let's get started
 electronic logbooks
 digital scopes

- Work together
- Write down the equipment used
- Make a diagram of the setup
- Note the settings of dials, switches, gauges

Use a software drawing program to make a detailed sketch

(PowerPoint works this very well)

- Use the eLog (see next).
- Write down what you did in real sentences.
- Provide enough detail that you can reconstruct later what you did!
- How will you look at the data later?
- Do you have enough information?
- Did the equipment perform as expected?

- Many experiments require you to "change and measure" something by hand
 - Make a <u>table</u> in a <u>paper logbook</u> or put the data directly into electronic worksheet (*preferable*).
 - Make a "quick sketch" of your by plotting the data using
 OriginPro or other software

Looking on the graph you can answer the questions:

- Do you have enough points?
- Do you have any obvious anomalies?
- You can repeat points but do not throw them out.
 Use other measurements to check reliability

Many experiments have built-in, computer-based data

acquisition (DAQ)

You will not have time to fully

understand the DAQ, but

- Be sure you know functionally what it is doing ask
- A good idea is to make test measurements of something you know
- As before, anomalies? enough points? uncertainties?

45

Where to exchange, store and retrieve course information. P403 Lab server

\\engr-file-03\PHYINST\APL Courses\PHYCS403

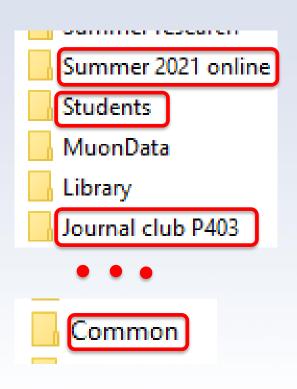
illinois.edu

Connecting to the PHYS403 server

Connect to VPN following the instructions on the UIUC VPN website:

https://techservices.illinois.edu/services/virtual-private-networkingvpn/download-and-set-up-the-vpn-client

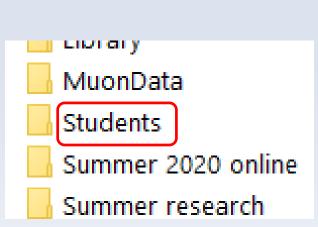
To connect to the PHYS403 Server:


- Connect to the VPN first, then enter the following as the share to connect to:
 - Mac users: Open Finder: Go: Connect to Server, type in address:
 smb://engr-file-03.engr.illinois.edu/PHYINST/APL Courses/PHYCS403
 - Windows users: Open Windows Explorer, type in address:
 \engr-file-03.engr.illinois.edu\PHYINST\APL Courses\PHYCS403
- When prompted for username and password, enter:
 "Uofl\[your netID]" and "[your netID password]"

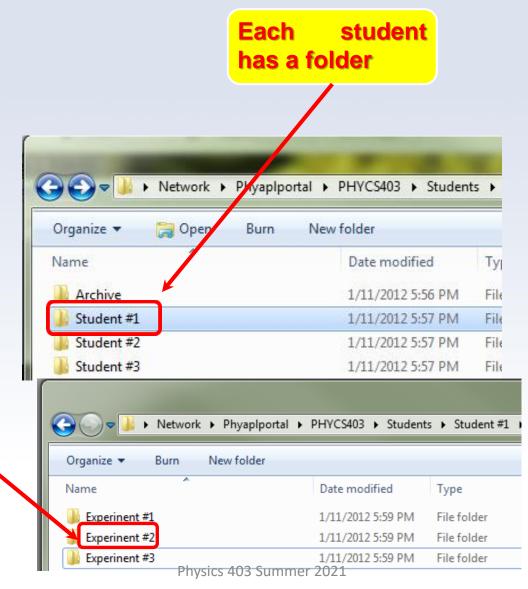
Where to exchange, store and retrieve course information. (i) Your data, projects, tables etc

\\engr-file-03\PHYINST\APL Courses\PHYCS403

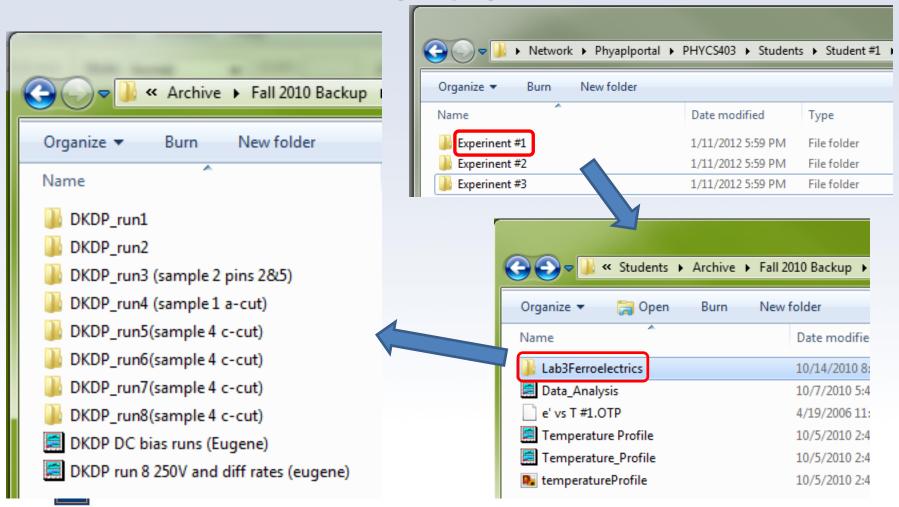
There is a lot useful and not very useful stuff in many folders you can find there

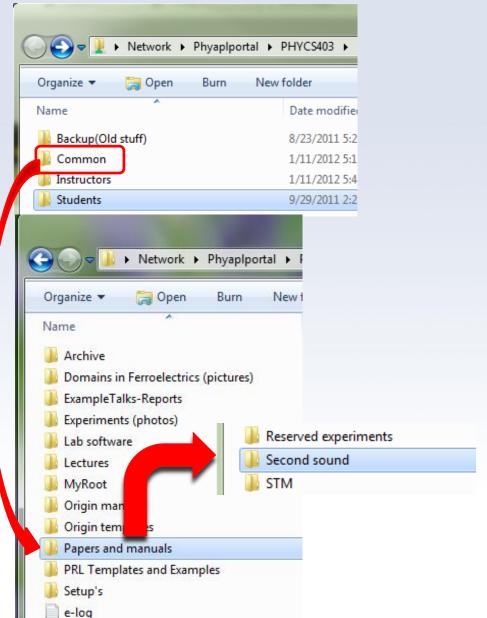


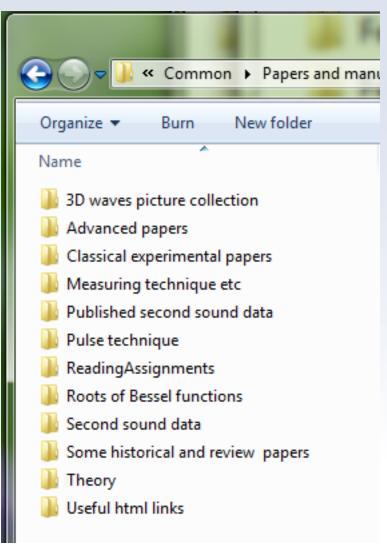
"Useful"
folders are
shown in red
frames


Where to exchange, store and retrieve course information. (i) Your data, projects, tables etc

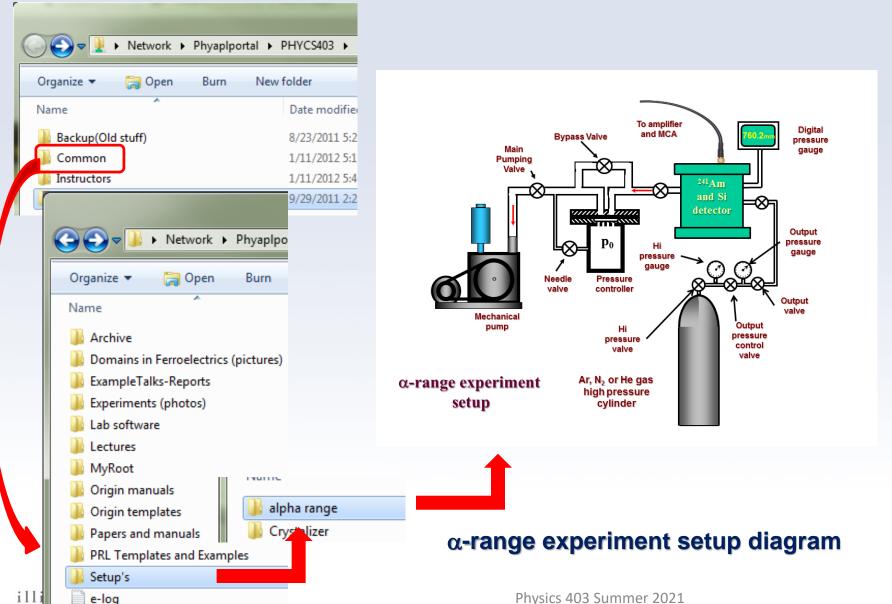
\\engr-file-03\PHYINST\APL Courses\PHYCS403


Store all experiment related materials in corresponding folder

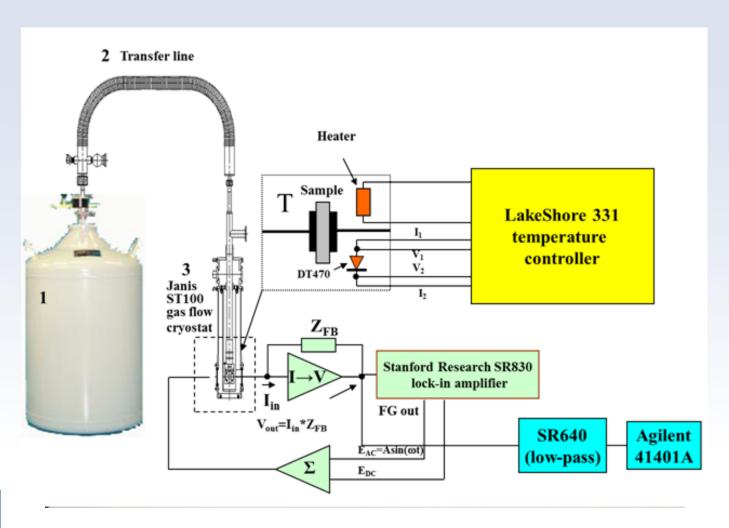



Where to exchange, store and retrieve course information. (i) Your data, projects, tables etc

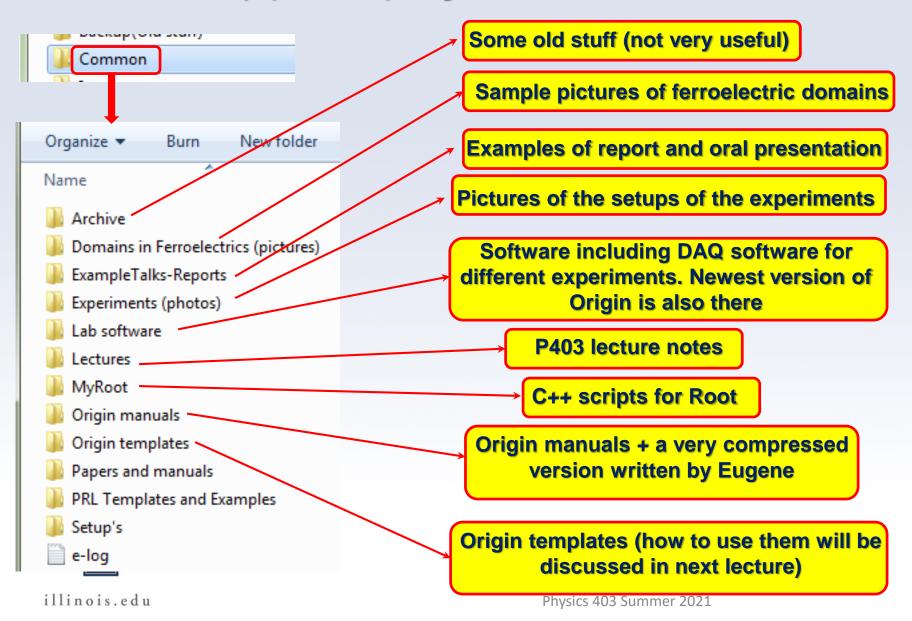
An example of the "smart" structure of folders containing the raw data and data analysis projects



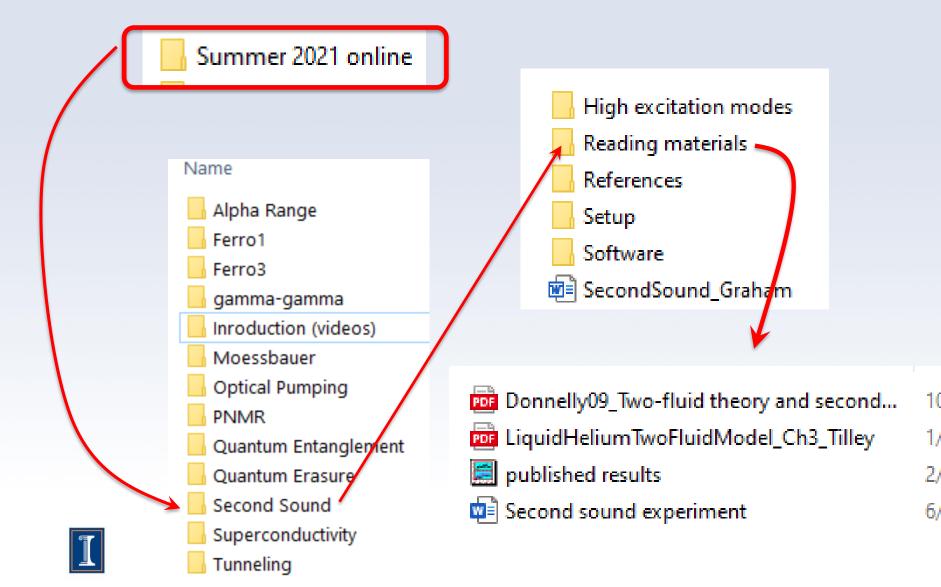
Manuals, papers, setup diagrams and other useful materials



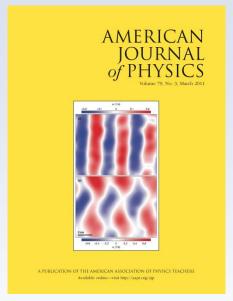
Manuals, papers, setup diagrams and other useful materials

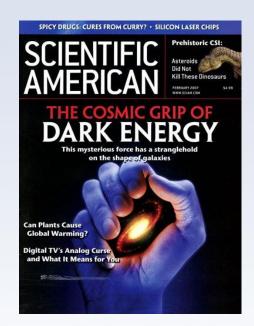


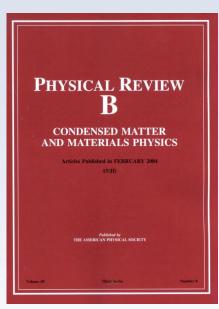
Setup diagrams – do not use cellphones to take the image of the setup from manual – for most setups we have PowerPoint projects with setups.



Manuals, papers, setup diagrams and other useful materials


Material Prepared for Online Teaching


"Journal club"


Lectures: 10am Journal club: 3pm

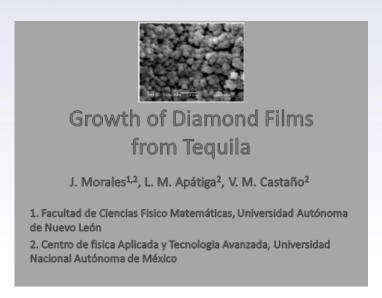
About Phy403

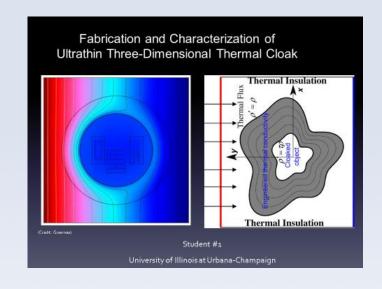
http://ajp.aapt.org/#mainWithRight

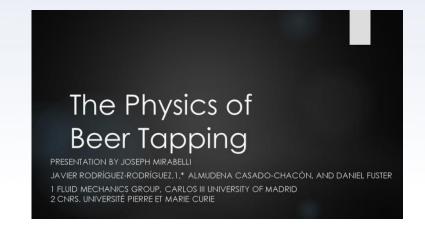
http://www.nature.com/nature/index.htm

http://www.scientificamerican.com/

http://www.sciencemag.org/journals



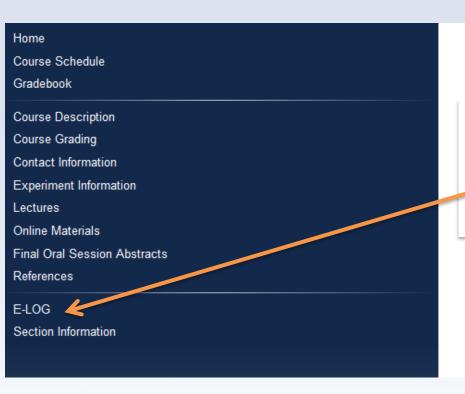

http://publish.aps.org or http://prola.aps.org/


illinois.edu Physics 403 Summer 2021 56

"Journal club"

"Journal club"

Journal Access


If you cannot access journal papers using VPN, go to UIUC's library proxy test site and enter the address of the paper you want to read:

http://www.library.illinois.edu/proxy/test/

Recommended journal websites

- American Physical Society Journals: https://journals.aps.org/about
- Nature: http://www.nature.com/nature/index.html
- Science: http://www.sciencemag.org/journals
- American Journal of Physics: http://scitation.aip.org/content/aapt/journal/ajp

PHYS 403 Summer 2021

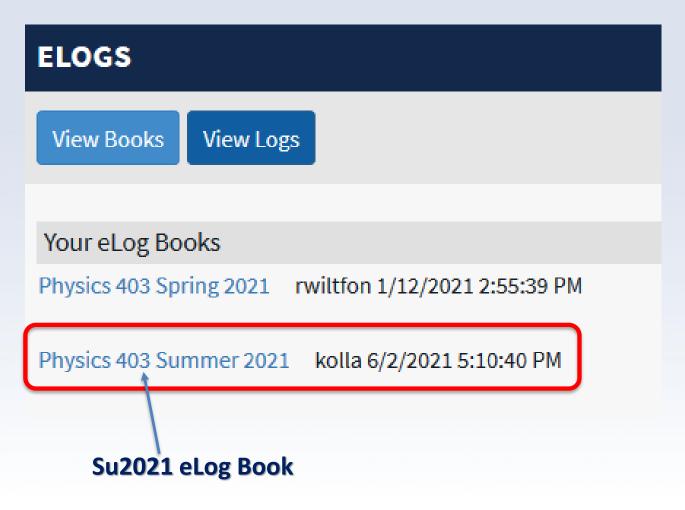
Home page

Link to e-Log

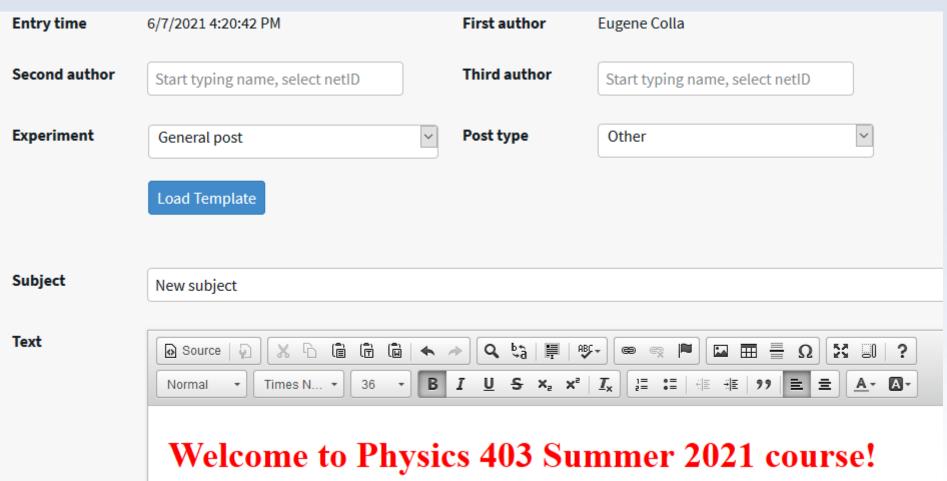
e your netid and

Welcome to Modern Experimental Physics, where you will learn techniques and experimental physics of atoms, atomic nuclei, molecules, the solid state, quantum optics and other a physical research. Please see the <u>course description</u> for an explanation of how this cour may seem complicated at first, but all the pieces do work together to enhance understant please consult the <u>schedule</u> to help you keep track of what is due when.

The goal of this lab course is to emulate the experience of working in an experimental re Students will learn to use sophisticated equipment and learn how to correctly write a lab


Use your University
Username and
Password

Please Sign In


Illinois Login

Or login as a guest

e-Log. Using Templates

Choose a template

Experiment	Ferro1 ~	-
	Load Template	

Templates are not "ready to go" eLog records. There are some suggestions and comments which you need to read, accept/decline and remove from the final version of the eLog record.

railable t erro1	emplates		<u></u>				
Material		Sample ID		Sample area: mm2		Sample thickness: mm	
File name	Folder	T range (K)	Frequency (Hz)	V _{AC} (V)	V _{DC} (V)	Comments	

In Commants you have to provide the idea of the consciount. This is only template related to the

e-logs: First a brief tour

How to use it

- Pause and summarize your work at natural stopping points in the action. This is useful for particular findings and measurement sequences.
- Along the way, save data, plots, scope shots to your folder on the server.
- Near the end of the class, add a summary/conclusion, indicate future directions, and make sure the e-log provides a rather complete overview of the highlights of your work. Upload your plots, scope shots, etc. and describe the data.

e-logs: Making a post ...

• To create a new post, click Create New Log

Fill in the Author, Experiment, Post Type, and Subject.
 Don't forget to enter the name of the second author

Entry time	6/7/2021 4:26:47 PM	First author	Eugene Colla	
Second author	Student no2	Third author	Start typing name, select netID	
Experiment	Ferro1 V	Post type	Setup	~
	Load Template			
Subject	First day record			

e-logs: Making a post ...

Goal: Be specific. Not, "Learn about experiment," but, for example, "In helium below temperatures of 2.17K, a second sound due to thermal effects becomes measurable. We will measure the speed of the second sound using a resonant cavity..."

Settings / Equipment Notes: Note important environmental and experimental parameters such as atmospheric pressure, settings on equipment, etc.

[Time Range 1]: Give time range, not just "before tea."

- Note important steps and results
- Include plots, photos, or scope shots in attachments below
- Use bullet points to make it easy to read

[Time Range 2]: ...

Conclusions & Future Plans: What did you find and what is the next step? Be specific. Not, "We measured decay times," but, for example, "Ruby #2 sample with higher concentration chromium was observed to decay with a form..."

Some General Physics 403 Rules.

No Food or Drinks in Lab except ESB 5105

Some General Physics 403 Rules.

You can have a short break in ESB 5105 where you will find coffee, tea, cookies

Some General Physics 403 Rules.

Because of COVID19 restriction we can't invite all of you at the same time in ESB 5105. Please follow the room capacity as shown on the wall in this room.

